51 lines
1.3 KiB
Python
51 lines
1.3 KiB
Python
![]() |
import numpy as np
|
||
|
import matplotlib.pyplot as plt
|
||
|
from tensorflow.keras.preprocessing import image
|
||
|
from tensorflow.keras.models import load_model
|
||
|
import tensorflow as tf
|
||
|
|
||
|
# # 加载Fashion-MNIST数据集
|
||
|
# fashion_mnist = tf.keras.datasets.fashion_mnist
|
||
|
# (X_train, y_train), (X_test, y_test) = fashion_mnist.load_data()
|
||
|
#
|
||
|
# # 数据预处理
|
||
|
# X_train = X_train / 255.0 # 将像素值缩放到0-1之间
|
||
|
# X_test = X_test / 255.0
|
||
|
#
|
||
|
# # 加载模型
|
||
|
# model = load_model('fashion_mnist_model.h5')
|
||
|
#
|
||
|
# # 评估模型
|
||
|
# loss, accuracy = model.evaluate(X_test, y_test)
|
||
|
# print(f'Test Loss: {loss}')
|
||
|
# print(f'Test Accuracy: {accuracy}')
|
||
|
|
||
|
|
||
|
# 图像文件路径
|
||
|
img_path = '运动鞋.png'
|
||
|
|
||
|
# 加载图像并调整大小
|
||
|
img = image.load_img(img_path, target_size=(28, 28), color_mode='grayscale')
|
||
|
|
||
|
# 将PIL图像转换为NumPy数组
|
||
|
img_array = image.img_to_array(img) / 255.0
|
||
|
|
||
|
# 添加批量维度
|
||
|
img_array = np.expand_dims(img_array, axis=0)
|
||
|
|
||
|
# 显示图像
|
||
|
plt.imshow(img_array[0, :, :, 0], cmap='gray')
|
||
|
plt.show()
|
||
|
|
||
|
# 打印图像数组形状
|
||
|
print(f'Image array shape: {img_array.shape}')
|
||
|
|
||
|
# 加载训练好的模型
|
||
|
model = load_model('fashion_mnist_model.h5')
|
||
|
|
||
|
# 进行预测
|
||
|
predictions = model.predict(img_array)
|
||
|
predicted_class = np.argmax(predictions, axis=1)
|
||
|
print(f'Predicted class: {predicted_class[0]}')
|
||
|
|