pythonproject/fashion_test.py

51 lines
1.3 KiB
Python
Raw Normal View History

2024-06-25 14:15:07 +08:00
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import load_model
import tensorflow as tf
# # 加载Fashion-MNIST数据集
# fashion_mnist = tf.keras.datasets.fashion_mnist
# (X_train, y_train), (X_test, y_test) = fashion_mnist.load_data()
#
# # 数据预处理
# X_train = X_train / 255.0 # 将像素值缩放到0-1之间
# X_test = X_test / 255.0
#
# # 加载模型
# model = load_model('fashion_mnist_model.h5')
#
# # 评估模型
# loss, accuracy = model.evaluate(X_test, y_test)
# print(f'Test Loss: {loss}')
# print(f'Test Accuracy: {accuracy}')
# 图像文件路径
img_path = '运动鞋.png'
# 加载图像并调整大小
img = image.load_img(img_path, target_size=(28, 28), color_mode='grayscale')
# 将PIL图像转换为NumPy数组
img_array = image.img_to_array(img) / 255.0
# 添加批量维度
img_array = np.expand_dims(img_array, axis=0)
# 显示图像
plt.imshow(img_array[0, :, :, 0], cmap='gray')
plt.show()
# 打印图像数组形状
print(f'Image array shape: {img_array.shape}')
# 加载训练好的模型
model = load_model('fashion_mnist_model.h5')
# 进行预测
predictions = model.predict(img_array)
predicted_class = np.argmax(predictions, axis=1)
print(f'Predicted class: {predicted_class[0]}')