{ "cells": [ { "metadata": {}, "cell_type": "raw", "source": "MNIST数据集 (LeCun et al., 1998) 是图像分类中广泛使用的数据集之一,但作为基准数据集过于简单。 我们将使用类似但更复杂的Fashion-MNIST数据集 (Xiao et al., 2017)。", "id": "58ac648c45d06f50" }, { "metadata": { "ExecuteTime": { "end_time": "2024-05-19T04:24:31.687065Z", "start_time": "2024-05-19T04:24:22.281131Z" } }, "cell_type": "code", "source": [ "import tensorflow as tf\n", "from d2l import tensorflow as d2l\n", "\n", "d2l.use_svg_display()" ], "id": "4f19e5d16d0a7341", "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2024-05-19 12:24:22.318857: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: SSE4.1 SSE4.2 AVX AVX2 FMA\n", "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" ] } ], "execution_count": 1 }, { "metadata": {}, "cell_type": "raw", "source": [ "3.5.1. 读取数据集\n", "我们可以通过框架中的内置函数将Fashion-MNIST数据集下载并读取到内存中。" ], "id": "c67a3433075cb8ed" }, { "metadata": {}, "cell_type": "code", "outputs": [], "execution_count": null, "source": "mnist_train, mnist_test = tf.keras.datasets.fashion_mnist.load_data()", "id": "e5defd40322a3af2" }, { "metadata": {}, "cell_type": "raw", "source": "Fashion-MNIST由10个类别的图像组成, 每个类别由训练数据集(train dataset)中的6000张图像 和测试数据集(test dataset)中的1000张图像组成。 因此,训练集和测试集分别包含60000和10000张图像。 测试数据集不会用于训练,只用于评估模型性能。", "id": "9f2c0b217b6b5e30" }, { "metadata": {}, "cell_type": "code", "outputs": [], "execution_count": null, "source": "len(mnist_train[0]), len(mnist_test[0])", "id": "6129edd7e9c7e9fc" }, { "metadata": {}, "cell_type": "markdown", "source": [ "每个输入图像的高度和宽度均为28像素。 数据集由灰度图像组成,其通道数为1。 为了简洁起见,本书将高度\n", "h像素、宽度w像素图像的形状记hxw或(h,w)。" ], "id": "719bd9e11b3b06a9" }, { "metadata": {}, "cell_type": "code", "outputs": [], "execution_count": null, "source": "mnist_train[0][0].shape", "id": "3ed7450fafac4f36" } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 5 }