import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense # 加载Fashion-MNIST数据集 fashion_mnist = tf.keras.datasets.fashion_mnist (X_train, y_train), (X_test, y_test) = fashion_mnist.load_data() # 数据预处理 X_train = X_train / 255.0 # 将像素值缩放到0-1之间 X_test = X_test / 255.0 # 如果使用卷积神经网络(CNN),需要调整数据形状 X_train = X_train.reshape((X_train.shape[0], 28, 28, 1)) X_test = X_test.reshape((X_test.shape[0], 28, 28, 1)) # 标签数据保持不变 print(f'Training data shape: {X_train.shape}, Training labels shape: {y_train.shape}') print(f'Test data shape: {X_test.shape}, Test labels shape: {y_test.shape}') # 构建模型 model = Sequential([ Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)), MaxPooling2D((2, 2)), Conv2D(64, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Flatten(), Dense(128, activation='relu'), Dense(10, activation='softmax') # 输出层使用softmax进行10分类 ]) # # 编译模型 # model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # # # 训练模型 # model.fit(X_train, y_train, epochs=15, batch_size=32, validation_split=0.2) early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=3) lr_schedule = tf.keras.callbacks.LearningRateScheduler(lambda epoch: 1e-3 * 10**(epoch / 20)) model.compile(optimizer=tf.keras.optimizers.Adam(), loss='sparse_categorical_crossentropy', metrics=['accuracy']) history = model.fit(X_train, y_train, epochs=100, batch_size=32, validation_split=0.2, callbacks=[early_stopping, lr_schedule]) # 评估模型 loss, accuracy = model.evaluate(X_test, y_test) print(f'Test Loss: {loss}') print(f'Test Accuracy: {accuracy}') model.save('fashion_mnist_model.h5')