404 lines
5.8 KiB
Plaintext
404 lines
5.8 KiB
Plaintext
layer {
|
|
name: "data"
|
|
type: "Input"
|
|
top: "data"
|
|
input_param {
|
|
shape {
|
|
dim: 1
|
|
dim: 1
|
|
dim: 224
|
|
dim: 224
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv0"
|
|
type: "Convolution"
|
|
bottom: "data"
|
|
top: "conv0"
|
|
param {
|
|
lr_mult: 1.0
|
|
decay_mult: 1.0
|
|
}
|
|
param {
|
|
lr_mult: 1.0
|
|
decay_mult: 0.0
|
|
}
|
|
convolution_param {
|
|
num_output: 32
|
|
bias_term: true
|
|
pad: 1
|
|
kernel_size: 3
|
|
group: 1
|
|
stride: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv0/lrelu"
|
|
type: "ReLU"
|
|
bottom: "conv0"
|
|
top: "conv0"
|
|
relu_param {
|
|
negative_slope: 0.05000000074505806
|
|
}
|
|
}
|
|
layer {
|
|
name: "db1/reduce"
|
|
type: "Convolution"
|
|
bottom: "conv0"
|
|
top: "db1/reduce"
|
|
param {
|
|
lr_mult: 1.0
|
|
decay_mult: 1.0
|
|
}
|
|
param {
|
|
lr_mult: 1.0
|
|
decay_mult: 0.0
|
|
}
|
|
convolution_param {
|
|
num_output: 8
|
|
bias_term: true
|
|
pad: 0
|
|
kernel_size: 1
|
|
group: 1
|
|
stride: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "db1/reduce/lrelu"
|
|
type: "ReLU"
|
|
bottom: "db1/reduce"
|
|
top: "db1/reduce"
|
|
relu_param {
|
|
negative_slope: 0.05000000074505806
|
|
}
|
|
}
|
|
layer {
|
|
name: "db1/3x3"
|
|
type: "Convolution"
|
|
bottom: "db1/reduce"
|
|
top: "db1/3x3"
|
|
param {
|
|
lr_mult: 1.0
|
|
decay_mult: 1.0
|
|
}
|
|
param {
|
|
lr_mult: 1.0
|
|
decay_mult: 0.0
|
|
}
|
|
convolution_param {
|
|
num_output: 8
|
|
bias_term: true
|
|
pad: 1
|
|
kernel_size: 3
|
|
group: 8
|
|
stride: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "db1/3x3/lrelu"
|
|
type: "ReLU"
|
|
bottom: "db1/3x3"
|
|
top: "db1/3x3"
|
|
relu_param {
|
|
negative_slope: 0.05000000074505806
|
|
}
|
|
}
|
|
layer {
|
|
name: "db1/1x1"
|
|
type: "Convolution"
|
|
bottom: "db1/3x3"
|
|
top: "db1/1x1"
|
|
param {
|
|
lr_mult: 1.0
|
|
decay_mult: 1.0
|
|
}
|
|
param {
|
|
lr_mult: 1.0
|
|
decay_mult: 0.0
|
|
}
|
|
convolution_param {
|
|
num_output: 32
|
|
bias_term: true
|
|
pad: 0
|
|
kernel_size: 1
|
|
group: 1
|
|
stride: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "db1/1x1/lrelu"
|
|
type: "ReLU"
|
|
bottom: "db1/1x1"
|
|
top: "db1/1x1"
|
|
relu_param {
|
|
negative_slope: 0.05000000074505806
|
|
}
|
|
}
|
|
layer {
|
|
name: "db1/concat"
|
|
type: "Concat"
|
|
bottom: "conv0"
|
|
bottom: "db1/1x1"
|
|
top: "db1/concat"
|
|
concat_param {
|
|
axis: 1
|
|
}
|
|
}
|
|
layer {
|
|
name: "db2/reduce"
|
|
type: "Convolution"
|
|
bottom: "db1/concat"
|
|
top: "db2/reduce"
|
|
param {
|
|
lr_mult: 1.0
|
|
decay_mult: 1.0
|
|
}
|
|
param {
|
|
lr_mult: 1.0
|
|
decay_mult: 0.0
|
|
}
|
|
convolution_param {
|
|
num_output: 8
|
|
bias_term: true
|
|
pad: 0
|
|
kernel_size: 1
|
|
group: 1
|
|
stride: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "db2/reduce/lrelu"
|
|
type: "ReLU"
|
|
bottom: "db2/reduce"
|
|
top: "db2/reduce"
|
|
relu_param {
|
|
negative_slope: 0.05000000074505806
|
|
}
|
|
}
|
|
layer {
|
|
name: "db2/3x3"
|
|
type: "Convolution"
|
|
bottom: "db2/reduce"
|
|
top: "db2/3x3"
|
|
param {
|
|
lr_mult: 1.0
|
|
decay_mult: 1.0
|
|
}
|
|
param {
|
|
lr_mult: 1.0
|
|
decay_mult: 0.0
|
|
}
|
|
convolution_param {
|
|
num_output: 8
|
|
bias_term: true
|
|
pad: 1
|
|
kernel_size: 3
|
|
group: 8
|
|
stride: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "db2/3x3/lrelu"
|
|
type: "ReLU"
|
|
bottom: "db2/3x3"
|
|
top: "db2/3x3"
|
|
relu_param {
|
|
negative_slope: 0.05000000074505806
|
|
}
|
|
}
|
|
layer {
|
|
name: "db2/1x1"
|
|
type: "Convolution"
|
|
bottom: "db2/3x3"
|
|
top: "db2/1x1"
|
|
param {
|
|
lr_mult: 1.0
|
|
decay_mult: 1.0
|
|
}
|
|
param {
|
|
lr_mult: 1.0
|
|
decay_mult: 0.0
|
|
}
|
|
convolution_param {
|
|
num_output: 32
|
|
bias_term: true
|
|
pad: 0
|
|
kernel_size: 1
|
|
group: 1
|
|
stride: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "db2/1x1/lrelu"
|
|
type: "ReLU"
|
|
bottom: "db2/1x1"
|
|
top: "db2/1x1"
|
|
relu_param {
|
|
negative_slope: 0.05000000074505806
|
|
}
|
|
}
|
|
layer {
|
|
name: "db2/concat"
|
|
type: "Concat"
|
|
bottom: "db1/concat"
|
|
bottom: "db2/1x1"
|
|
top: "db2/concat"
|
|
concat_param {
|
|
axis: 1
|
|
}
|
|
}
|
|
layer {
|
|
name: "upsample/reduce"
|
|
type: "Convolution"
|
|
bottom: "db2/concat"
|
|
top: "upsample/reduce"
|
|
param {
|
|
lr_mult: 1.0
|
|
decay_mult: 1.0
|
|
}
|
|
param {
|
|
lr_mult: 1.0
|
|
decay_mult: 0.0
|
|
}
|
|
convolution_param {
|
|
num_output: 32
|
|
bias_term: true
|
|
pad: 0
|
|
kernel_size: 1
|
|
group: 1
|
|
stride: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "upsample/reduce/lrelu"
|
|
type: "ReLU"
|
|
bottom: "upsample/reduce"
|
|
top: "upsample/reduce"
|
|
relu_param {
|
|
negative_slope: 0.05000000074505806
|
|
}
|
|
}
|
|
layer {
|
|
name: "upsample/deconv"
|
|
type: "Deconvolution"
|
|
bottom: "upsample/reduce"
|
|
top: "upsample/deconv"
|
|
param {
|
|
lr_mult: 1.0
|
|
decay_mult: 1.0
|
|
}
|
|
param {
|
|
lr_mult: 1.0
|
|
decay_mult: 0.0
|
|
}
|
|
convolution_param {
|
|
num_output: 32
|
|
bias_term: true
|
|
pad: 1
|
|
kernel_size: 3
|
|
group: 32
|
|
stride: 2
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "upsample/lrelu"
|
|
type: "ReLU"
|
|
bottom: "upsample/deconv"
|
|
top: "upsample/deconv"
|
|
relu_param {
|
|
negative_slope: 0.05000000074505806
|
|
}
|
|
}
|
|
layer {
|
|
name: "upsample/rec"
|
|
type: "Convolution"
|
|
bottom: "upsample/deconv"
|
|
top: "upsample/rec"
|
|
param {
|
|
lr_mult: 1.0
|
|
decay_mult: 1.0
|
|
}
|
|
param {
|
|
lr_mult: 1.0
|
|
decay_mult: 0.0
|
|
}
|
|
convolution_param {
|
|
num_output: 1
|
|
bias_term: true
|
|
pad: 0
|
|
kernel_size: 1
|
|
group: 1
|
|
stride: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "nearest"
|
|
type: "Deconvolution"
|
|
bottom: "data"
|
|
top: "nearest"
|
|
param {
|
|
lr_mult: 0.0
|
|
decay_mult: 0.0
|
|
}
|
|
convolution_param {
|
|
num_output: 1
|
|
bias_term: false
|
|
pad: 0
|
|
kernel_size: 2
|
|
group: 1
|
|
stride: 2
|
|
weight_filler {
|
|
type: "constant"
|
|
value: 1.0
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "Crop1"
|
|
type: "Crop"
|
|
bottom: "nearest"
|
|
bottom: "upsample/rec"
|
|
top: "Crop1"
|
|
}
|
|
layer {
|
|
name: "fc"
|
|
type: "Eltwise"
|
|
bottom: "Crop1"
|
|
bottom: "upsample/rec"
|
|
top: "fc"
|
|
eltwise_param {
|
|
operation: SUM
|
|
}
|
|
}
|